Energy Methods for Reaction - Diffusion Problems
نویسنده
چکیده
ENERGY METHODS FOR REACTION-DIFFUSION PROBLEMS by Xing Zhong Nonlinear reaction-diffusion equations arise in many areas of applied sciences such as combustion modeling, population dynamics, chemical kinetics, etc. A fundamental problem in the studies of these equations is to understand the long time behavior of solutions of the associated Cauchy problem. These kinds of questions were originally studied in the context of combustion modeling. For suitable nonlinearity and a monotone increasing one-parameter family of initial data starting with zero data, small values of the parameter lead to extinction, whereas large values of the parameter may lead to spreading, i.e., the solution converging locally uniformly to a positive spatially independent stable steady state. A natural question is the existence of the threshold set of the parameters for which neither extinction nor spreading occurs. Even in one space dimension, this long standing question concerning threshold phenomena is far from trivial. Recent results show that if the initial data are compactly supported, then there exists a sharp transition between extinction and spreading, i.e., the threshold set contains only one point. However, these results rely in an essential way on compactly supported initial data assumption and only give limited information about the solutions when spreading occurs. In this dissertation, energy methods based on the gradient flow structure of reaction-diffusion equations are developed. The long time behavior of solutions of the Cauchy problem for nonlinear reaction-diffusion equations in one space dimension with the nonlinearity of bistable, ignition or monostable type is analyzed. For symmetric decreasing initial data in L(R) ∩ L∞(R), the convergence results for the considered equations are studied, and the existence of a one-to-one relation between the long time behavior of the solution and the limit value of its energy is proved. In addition, by employing a weighted energy functional, a mathematical description of the equivalence between spreading and propagation of the solutions of the considered equations is given. More precisely, if spreading occurs, then the leading and the trailing edge of the solution propagate faster than some constant speed. Therefore, if the solution spreads, it also propagates. Furthermore, for a monotone family of symmetric decreasing initial data, there exists a sharp threshold between propagation and extinction. ENERGY METHODS FOR REACTION-DIFFUSION PROBLEMS
منابع مشابه
Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملNumerical Study on the Reaction Cum Diffusion Process in a Spherical Biocatalyst
In chemical engineering, several processes are represented by singular boundary value problems. In general, classical numerical methods fail to produce good approximations for the singular boundary value problems. In this paper, Chebyshev finite difference (ChFD) method and DTM-Pad´e method, which is a combination of differential transform method (DTM) and Pad´e approximant, are applied for sol...
متن کاملA numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon
This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...
متن کاملA numerical treatment of a reaction-diffusion model of spatial pattern in the embryo
In this work the mathematical model of a spatial pattern in chemical and biological systems is investigated numerically. The proposed model considered as a nonlinear reaction-diffusion equation. A computational approach based on finite difference and RBF-collocation methods is conducted to solve the equation with respect to the appropriate initial and boundary conditions. The ability and robust...
متن کاملThe Contribution of Molecular Diffusion in Silica Coating and Chemical Reaction in the Overall Rate of Reaction of Aluminum Hydroxide with Fluosilicic Acid
The kinetic of the heterogeneous chemical reaction of aluminum hydroxide and fluosilicic acid was studied. It was found that the diffusion of the reactants through the porous silica coating to the aluminum hydroxide surface and the interfacial chemical reaction between the diffusing reactant and aluminum hydroxide platelets control the overall reaction rate. These two phenomena were studied...
متن کاملPullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains
At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.
متن کامل